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The dynamical systems arising from gene regulatory, signalling and metabolic networks
are strongly nonlinear, have high-dimensional state spaces and depend on large numbers of
parameters. Understanding the relation between the structure and the function for such
systems is a considerable challenge. We need tools to identify key points of regulation,
illuminate such issues as robustness and control and aid in the design of experiments. Here,
I tackle this by developing new techniques for sensitivity analysis. In particular, I show how
to globally analyse the sensitivity of a complex system by means of two new graphical objects:
the sensitivity heat map and the parameter sensitivity spectrum. The approach to sensitivity
analysis is global in the sense that it studies the variation in the whole of the model’s solution
rather than focusing on output variables one at a time, as in classical sensitivity analysis.
This viewpoint relies on the discovery of local geometric rigidity for such systems, the
mathematical insight that makes a practicable approach to such problems feasible for highly
complex systems. In addition, we demonstrate a new summation theorem that substantially
generalizes previous results for oscillatory and other dynamical phenomena. This theorem
can be interpreted as a mathematical law stating the need for a balance between fragility and
robustness in such systems.

Keywords: sensitivity; robustness; mathematical models; circadian clocks;
signalling networks; regulatory networks
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1. INTRODUCTION

It has recently been emphasized that uncovering the
design principles behind complex regulatory and
signalling systems requires an analysis of degrees of
complexity that cannot be grasped by intuition alone
(Csete & Doyle 2002; Kitano 2002, 2004; Stelling et al.
2004b). This task requires some form of mathematical
analysis and the discovery of some more universal
principles. In particular, this is true of two related key
aspects of the design principles problem: firstly,
determining how such systems address the need for
robustness and trade-off robustness of some aspects
against fragility of others; and, secondly, determining
the key points of regulation in such systems, aspects
of the network that are crucial to its behaviour
and control.

Because it identifies which parameters a given
particular aspect of the system is most sensitive to,
classical sensitivity analysis (Hwang et al. 1978; Kacser
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et al. 1995; Heinrich & Schuster 1996; Campolongo
et al. 2000; Stelling et al. 2004a) is a very useful tool that
has been used to address both of these aspects.
However, apart from some summation theorems
about the control coefficients for period and amplitude
of free-running oscillators that are analogous to those
derived as in metabolic control analysis (Kacser et al.
1995; Heinrich & Schuster 1996; Fell 1997), there is
currently rather little general theory about general
non-equilibrium networks. There is a great need to
develop tools that give a more integrated picture of all
the sensitivities of a system and to develop more
coherent universal or widely applicable general
principles underlying these sensitivities. To this end,
we provide a compact and easily comprehensible
representation of all the sensitivities and a precise
statement of the robustness—{ragility balance (a global
summation theorem).

Control coefficients have been widely used particu-
larly in the engineering sciences and metabolic control
theory. In such applications, it is natural to fix a
particular observable or performance measure @ of
interest and then ask how sensitive this is to the various
parameters. However, in many systems biology appli-
cations there are multiple performance measures of
interest. For example, in the study of circadian

This journal is © 2008 The Royal Society
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Table 1. A list of some models analysed together with the number of state variables n, the number of parameters s and the rate of
decay « of the singular values o; (i.e. log)y g; ~—ai). (The superscripts ‘u’ and ‘f” for the circadian oscillators indicate,
respectively, the values for the cases where the oscillator is unforced and forced by light.)

model

Neurospora clock; Leloup et al. (1999)
Drosophila clock; Leloup et al. (1999)
Drosophila clock; Ueda et al. (2001)
Drosophila clock; Tyson et al. (1999)
mammalian clock; Leloup & Goldbeter (2003)
mammalian clock; Forger & Peskin (2003)
yeast cell cycle; Tyson et al. (2002)

full NF-kB model; Hoffmann et al. (2002) and Nelson (2004)

glycolytic oscillations; Ruoff et al. (2003)

oscillators one is interested in many aspects such as the
free-running period, the strength of entrainment and
the consequent phases of the various molecular
products, the phase response curves, period and phase
as a function of temperature and the response to
different day lengths. For signalling systems such as
that of the NF-kB system, one is interested in multiple
aspects of the response to a signal related to its
strength, timing, persistence, decay and transient,
equilibrium or oscillatory structure. Moreover, in the
search for key points of regulation there may be aspects,
where the system is particularly sensitive, that do not
correspond to obvious performance measures. There-
fore, it would be extremely useful to have an effective
approach that will find the sensitivity of all the
performance measures and operating aspects of a
given model.

The approach to sensitivity analysis developed here is
a global one that studies the variation of the whole
solution rather than focusing on just one output variable.
In addition, this more global approach allows us to
address which observable variables @ (henceforth called
observables) are affected by which parameters k; without
having to choose the variable or parameter in advance.
The results of this analysis can be summarized in

— the sensitiwity heat map (SHM ') from which one is able
to effectively identify those observables () that are
sensitive to some parameter, and

— the parameter sensitivity spectrum ( PSS) that charac-
terizes the sensitivity of these observables and the
system as a whole with respect to each parameter.

The crucial observation that makes the theory
applicable in practice by ensuring that for a given
tolerance the above objects are compact and manage-
able is that such network systems are rigid in the
following sense. The map from parameters to the
corresponding solutions of interest (a map from a
high-dimensional space R® to an infinite-dimensional
solution space) locally maps round balls to ellipsoids
with axes lengths 0y > 09 > 05--->0, where the lengths
g; decrease very rapidly. This is rigidity because
random jiggling of the parameter vector in the high-
dimensional parameter space results in the variation of
the solution of interest that effectively occupies a space
of much lower dimension.

J. R. Soc. Interface (2008)
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Figure 1. The plot shows logq ; for the largest singular values
of the models in table 1. The case shown is for relative changes
in both parameters and the solution (as explained in §2.4). We
see that, for all these examples, the o, decay exponentially like
exp(—ai) and that the rate of decay a>0 varies significantly
from model to model. The models are listed in the same order
as in table 1, which are as follows: open circle, Neurospora;
open square, Drosophila 1; open diamond, Drosophila 2;
open down triangle, Drosophila 3; open up triangle, mamma-
lian 1; filled circle, mammalian 2; filled square, cell cycle;
filled diamond, full NF-«B; filled down triangle, glycolytic
oscillations.

The sensitivity principal components (PCs) Ugt)
that we present in §2 are key components of our theory.
These are multidimensional time series from which all
system derivatives can be calculated and whose import-
ance rapidly decreases as i increases. We show that,
when the parameters being varied are a full set of linear
parameters, the sensitivity PCs satisfy a global sum-
mation theorem which says that a certain linear
combination of them sums to a function that is simply
related to the original differential equation. This global
summation theorem contains within it the other known
simple summation theorems for dynamic systems such
as those for the period and amplitude of an oscillatory
solution of an unforced oscillator. However, it is a
substantial generalization because it relates a set of
functions rather than a set of numbers and thus is
effectively an infinite number of simple summation
conditions. Moreover, unlike the classical summation
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@ ratio max min
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CRY I S 200 e . 100 517 188

cyto PER:CRY I 100 086 -1.85
nuc PER:CRY I 0903 0.70 -181 4.30

Per mMRNA I 093 068 -1.72
PER I 051 -0.13  —0.95 3.42

Bmall mRNA I 031 0.07 —0.58
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time (h)

Figure 2. Cy(t) =0, Uy(¢) for the model of the mammalian circadian clock due to Leloup & Goldbeter (2003) with no forcing by
light (i.e. in DD). Each of the 16 components C ,,=a1 U, ,, is represented by a coloured strip that shows the value of Cy ,,,(¢) at
the corresponding time 0 <t< T, where T'is the period of the oscillation. In order to highlight their structure the Cy ,, are scaled
by a factor 1/a,, so that the values taken by C) ,,(¢) fill a maximal range of the interval from min,, ,Cy ,v(t) to max,, ,Cy . (t).
They are shown in order of decreasing a,, and the values of a,, are shown in the column headed ratio. Thus one sees that the
amplitude a,, of C) ,, for CRY protein is more than 100 times that of phosphorylated cytoplasmic PER CRY complexes or
phosphorylated cytoplasmic BMALIL protein. A glance shows that CRY is the most sensitive in that a,, is largest, followed by
cytoplasmic PER CRY complexes (cyto PER:CRY), nuclear PER CRY complexes (nuc PER:CRY), Per mRNA and PER
protein in that order. We can also quickly see at what times or phases these variables are fragile or robust. Thus we see that CRY
is most fragile at times close to t=14.5 hours and relatively fragile over a broad band of phases centred on this time, while the
variable for nuclear PER CRY complexes is most fragile close to =18 hours, but even there, much less so than CRY. On
the other hand since their amplitude is so small, the last six variables are relatively insensitive at all phases. In calculating these
sensitivity PCs no scaling of the dynamical variables is carried out but the scaled parameters n;=1log k; have been used. In cases
where these variables have significantly different scales, it is usually preferable to scale the variables to concentrate on relative
changes rather than absolute ones. As is explained in §3, this scaled approach is very easy to implement. In (b), the curves are as
follows: dark blue, CRY; green, cyto PER:CRY; red, nuc PER:CRY; light blue, Per mRNA; purple, PER.

where tis time; = (2, ..., z,) are the state variables of
the system; and k= (kq, ..., k,) is a vector of parameters.

theorems, it applies to non-autonomous systems such
as forced oscillators as well as to autonomous systems.
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I have applied the theory to a broad range of examples
(table 1), but for the purposes of discussion and
illustration in this paper we will mainly consider two
representative examples: a model of the mammalian
circadian oscillator (Leloup & Goldbeter 2003) and a
version of the Hoffmann model for the NF-«B signalling
system (Hoffmann et al. 2002). The former is areasonably
representative example of a periodically oscillating
system and for the latter the solution of interest is a
transient solution produced by an incoming signal.

2. RESULTS

Suppose we are considering a regulatory or signalling
system modelled by the differential equation

dr = f(t7 z, k)7

= —=

i (2.1)

J. R. Soc. Interface (2008)

The vector k may contain all the parameters but we will
also consider the case where it only contains some and
where the other parameters are held fixed and only
kq, ..., k, are varied. For example, k may consist of just
those parameters that the system is particularly
sensitive to or may consist of just the linear parameters
as defined in §2.5.

In general, there will be a solution z = ¢(t, k) or a class
of solutions defined for a specific time range 0<¢t< T
that are of particular interest. For example, for circadian
oscillations the primary object of interest is an attracting
periodic orbit of equation (2.1) and T will be the period
of this orbit. On the other hand, for models of signalling
systems, one is often interested in a solution that is not
periodic but is defined by a given initial condition .
Such a signalling system is usually also subject to a given
perturbation caused by an incoming signal and this
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will typically be modelled by a sudden change in a
system parameter or by the time dependence of the r.h.s.
f(t, z, k) of equation (2.1).

In regulatory and signalling systems, the values of two
parameters may differ by an order of magnitude or more.
Therefore, it is usually not appropriate to consider the
absolute changes in the parameters k; but instead to
consider the relative changes. A good way to do this is to
introduce new parameters 7; = log k; because absolute
changes in 7); correspond to relative changes in k;. Then,
for small changes 6k to the parameters, on; = ok;/k;, so
the changes 0n; are scaled and non-dimensional.

2.1. Fundamental observation

There are two aspects to the fundamental observation
behind the tools and analysis presented here. The first is
that for such regulatory and signalling systems there are
the following easily computable objects:

(i) aset of n-dimensional time series U;(t) = (U;; (%),

o Uin(t), i=1,...,s defined for 0< t< T,

which are of unit length and orthogonal to each
other in the sense of equation (2.3),

(ii) a decreasing sequence of s positive numbers

o1 >+ 2> 0, called sensitivity singular values, and

(i) a special set of new parameters A= (y,...,4;)

that are related to the original (scaled) parameter

variations 01 by an orthogonal linear transfor-
mation W (i.e. 4,=3"; W on;),

with the following key property that connects them: if
0n is any change in the (scaled) parameter vector then
the change dg in the solution g of interest is given by

8g(t) =D A Uy(t) + O(lon]®).  (2:2)

The second aspect is that for a broad range of
networks such as those in table 1, the amplitudes
o1 >> 0,20 actually decrease very rapidly, usually
exponentially in the sense that log ¢; decreases linearly
with 4, i.e. o; ~exp(—ia), a>0.

The U; are of unit length and orthogonal to each other
in the following sense

n

T
Z J Ui,rrL(t) Uj,m(t)dt = 5ija
0 75

m=1

(2.3)

where ¢,; = 0 if 7% j and equals 1 if i=j. These are called
sensitivity PCs.

We stress two points here: (i) that the given system
and solution of interest determine the U;, the o;, Wand
the ; and (ii) that the change dg is described by (2.2) in
terms of these for any parameter perturbations é7.

It can easily be shown (see the electronic supple-
mentary material) that the derivatives dg/dn; of the
solution g with respect to the parameters 7; are given by

%9 = i: S Ui,

— 2.4
an; = 24

where S; = o, W;;.
One can regard equation (2.3) as saying that U; and
U; (i#j) are uncorrelated as functions of time ¢. The

J. R. Soc. Interface (2008)

derivatives dg/dn; and dg/dn; will in general be
correlated with each other and writing them as in
equation (2.4) is a decomposition of them into uncorre-
lated time series. Since the ¢; decay rapidly from a
significant value we see that, in fact, the derivatives are
highly correlated and their correlation is concentrated in
a few components U; with low values of i.

The usefulness of the U;, the ¢; and the §;; arises from
a combination of the following facts:

(i) they are straightforward to compute (see §3),
even for very complex models,

(ii) classical sensitivity coefficients can be expressed
in terms of them,

(iii) when represented in a heat map (see below), one
can rapidly map out all the sensitivities of a
complex model, and

(iv) since the amplitudes g; get small very quickly, for
a broad class of network models it is usually
necessary to consider only a small number of the
dominant U,

Let us illustrate the fundamental observation by
considering the two models mentioned above. For the
modified Hoffmann model (Hoffmann et al. 2002), there
are n=10 state variables z1, ..., 2;; corresponding to the
concentrations of nuclear and cytoplasmic NF-kB and
IkBa and their complexes plus IKK, and s=42
parameters k; most of which are rate constants. This is
a simplified version of the model in Hoffmann et al
(2002) in which, of the IkB’s, only IkBea is included
and not IkBf and IkBe. The solution ¢(¢) considered
is the transient orbit produced when an incoming
signal at t=0 increases the level of IKK above the
equilibrium level. The IKK is washed out at =600 min.
The mammalian clock model (Leloup & Goldbeter 2003)
has n=16 state variables and s=53 parameters. Both
have rapidly decreasing sensitivity spectra as is shown
in figure 1. The g;-scaled sensitivity PC C,(t) = o, U, (t)
for the above model of the mammalian oscillator is
shown in figure 2 as a heat map. Although these two
models have a large number of state variables and
parameters, to study all their sensitivities that are no
smaller than 5% of the biggest it is enough to consider
only the first five U

The results behind this observation about the rapid
decay of the o; were first developed independently in
Brown & Sethna (2003), Brown et al. (2004) and Rand
et al. (2004, 2006). In the former work, the o; appeared as
the square roots of the eigenvalues of the Hessian of
the function that has to be minimized when doing
least-squares fitting of parameters to data for such
models. In the latter reference they arose as part of an
argument about the complex structure of circadian
clocks being a result of the inflexibility of such systems
despite the large number of parameters. The link
between these two approaches is provided by the matrix
S=(S;) defined above (see equation (2.4)) by
S, =0;W;;. The square S'S is an example of a Fisher
information matrix and its eigenvalues are the 2. It can
be shown that under certain conditions it is the mean
value of the abovementioned Hessians (see electronic
supplementary material). In Waterfall et al. (2006), it is
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argued that such systems form a universality class and it
will be important to determine whether this is true or
whether there is a more mundane reason for this decay.
More evidence for the seemingly universal ubiquity of
the rapid decay of the o; in tightly coupled systems
biology models and the consequences for parameter
estimation are discussed in Gutenkunst et al. (2007).

2.2. Classical sensitivity coefficients from the U,

Typical classical sensitivity coefficients can be written in
terms of the U; and S;;. As explained in the electronic
supplementary material many can be written either as
a sum

QzalogQ
7 dlogk;

1
-5 a_Q _ ; a0 D,n(te)  (2.5)

for some finite set of times ¢, or as an integral over a
interval of times #; < tp < ¢,

1 [t
C]Q:—J a(te)D;m(te)dty,

t

where D; ,,(t,) is either
2 SyUimlte) or 3 8y

and U i.m is the derivative of U, with respect to time t.
Examples involving a sum include the control coeffi-
cients of phase and amplitude for forced oscillators and
the time for signals to peak in signalling systems.
Examples involving an integral include the Fourier
transforms of the components of the solution (reflecting
changes in the shapes of the time series). Thus, we
conclude that the control coefficients of interest are all
linear sums or integrals over t, of terms that are of the
form given in (2.6). This fact is key to understanding the
use of the SHMs.

In the electronic supplementary material the reader
will find a table listing some key observables for
oscillators and signalling systems and giving the
expressions for their control coefficients in terms of the
U 1, using formula (2.5).

1m tl? (26)

2.3. SHM and parameters sensitivities
graphically summarize all the system’s
sensitivities

We now discuss how to analyse the sensitivity of such a
complex dynamical system globally using the SHM and
the PSS (figures 3 and 6). They allow us to graphically
analyse what observables are significantly changed by
what parameters. We do not have to fix the observable
or parameter in advance but let the model decide what
the most salient observables are. The SHM and PSS are
intrinsic to the system and characterize its sensitivity in
a global fashion.
The strategy is to

(i) use the SHM to identify all those times t, and
indices i and m that correspond to the terms,
which are significantly large, of the form given in

J. R. Soc. Interface (2008)

equation (2.6) and thus to effectlvely determine
which observables @ have C’ significantly large
for some parameters k;, and then to

(i) use the PSS to identify, for those @ from (i), which

of the parameter indices j have € significantly
large.
2.8.1. Sensitivity heat map. Suppose
Fin() = i (2 Wil 7, 1) (2.7)
and
18w = e (mxIWl) o, ). (28)
(Note that f{3)(1)=|f,,(D]. max,| Wyl < 1, [U,n(0)]

<1 and the o; are decreasing rapldly for the systems

of interest.) _
Then [3; S Uim (D) < 325 fim(t) and |32 55U, (1))

<> flm (2). Thus, itC ]Q is a linear combination of terms
as in equation (2.6) using a given m and a given set of
times t,, the following is true: if f; ,,(Z,) and fffﬁ?( tp) are

small for all those values of #,, then |C' Q\ must be small.
Therefore to determine Whlch observables can have a
significant control coefficient c? ;~ we need to determine
all 4, m and t, such that either f;,,(,) or igdn)(tg) have
significant values. To do this we fix a small threshold 7
(e.g. 1% of the maximum value achieved by all the f; ,
and f ) and 1dent1fy all pairs (4,m) such that either
maxtflm(tg) or maxtf (tg) is greater than 7. Luckily,
since these sizes are comparable to o;, there are

relatively few pairs (¢,m) for which f;,, or f,(fl,? have to
be plotted: in the examples studied so far about twice the
number of state variables.

These f; ,, and f () are then plotted in the SHM. Since
relatively few f; ,, or ﬁ iz have to be plotted, the heat map
is compact and therefore convenient. For each such pair
(4,m) we inspect the f; ,, plotted in the SHM to determine
the set T;,, of times such that f;,,(t) or f;i? is
81gn1ﬁcantly large. This achieves step (i) above.

SHMs for the mammalian clock model and the NF-«B

signalling systems are shown in figures 3 and 6.

2.8.2. Parameter sensitivity spectrum. The matrix
S;;=0;W;; characterizes the sensitivity of the system
Wlth respect to each parameter. Recall that, up to
second-order terms that are O(||6]%), the variation dg

produced by a parameter variation 6n = (67, ..., 0n,) is
Z dg/0m;(t)om; = Z t) omj,

since dg/dn;(t) =>_;S; U;(t). We see that S;; completely
determines the effect of small changes d7n; in the jth
parameter 7; Moreover, since the Uj(t) are orthogonal in
time-series space, the Sj; act in independent directions
and efficiently parametrize the derivatives dg/dn;. In
fact, the §;; give a representation of the derivatives that
is optimal in that it maximizes the effect of terms with
low 4 (for a precise statement see the electronic
supplementary material).
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Figure 3. (a) The SHMs for the model of the mammalian circadian clock discussed in figure 2: (i) fi,, and (ii) fi(iz. The
threshold for the f;,, is set to be 5% of the global maximum of the f;,,(t). For the fz(z,z (t) heat map, the corresponding
threshold is 7.5%. These were chosen to keep the figure size small and smaller thresholds can be used. The only values of i
(the sensitivity PC index) and m (the variable index) for which max; f; ,,(¢) or 1(’:2 (t) is greater than this threshold have i=1,
2, 3, 4 or 5. Each block of variables corresponds to one value of 7. Thus, in (i), the first block of nine variables corresponds to
i=1. The plotted f;,, are coloured on the scale shown after scaling each of them by a factor 1/a;,, to make all their
amplitudes the same as that with maximum amplitude. These factors a; ,, are in the column marked ratio. (b) The PSS where
each group of bars corresponds to the value of logy | S| for a particular parameter k;. These are only plotted for those i for
which | S| is significant (in this case i=1-4). They are coloured as follows: red (pc 1), i=1; blue (pc 2), i=2; green (pc 3),
i=3; light blue (pc 4), i=4. The parameters k; are ordered by max;—; 4|5, and only the 25 most sensitive are plotted. To
demonstrate how the heat maps can be used, we consider the sensitivity of the 32 phases of the maxima and minima of the
various products. We see from table 1 of the electronic supplementary material that the control coefficient of such a phase for
z,(t) is proportional to a linear sum of the W;C,,, = S;U,,,, and we therefore need to check whether the phases of the
maxima or minima are hot times for the fijn. We have therefore plotted the maxima and minima on the fL:‘L heat map (black,
minima; white, maxima). We immediately see that some of the maxima are sensitive, notably Per mRNA and cytoplasmic
PER-CRY complexes that are the most sensitive. Following these, approximately one-third as sensitive are nuclear PER—
CRY complexes, Cry mRNA and CRY protein. Of the minima, only those of cytoplasmic PER-CRY complexes and CRY
protein appear to be significantly sensitive. Using the software described in the electronic supplementary material, one can
quickly turn this into quantitative information. For the most sensitive phases ¢, the high values of f”n (¢) occur when i=1.
Therefore, to see what parameters these most sensitive phases are sensitive to, we check the red bars in the PSS in the second
row of the figure, since these are the values of logyo |S1;|. We quickly see that four parameters dominate (vsp, vsc, vimp and
kib) and three others have a sensitivity a little above 10% of the maximum. Only 12 out of the 56 parameters have more than
1% of the maximum sensitivity for these phases.
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In figure 4 we see that, for the model of the
mammalian circadian clock, the magnitude of the S
decreases rapidly with 7 and relatively few of them have
logy| S| > 1073, In figures 3 and 6, the logy|S;| are
plotted as a grouped bar chart with the parameters
k; reordered according to the size of their sensitivity.
Using this for a given value of ¢ we can immediately
identify the strength of each parameter in moving
the solution ¢ in the direction of U, Although not
monotonically decreasing in 4, the S nevertheless
rapidly get small as ¢ increases. This can be seen in
figure 4 where we plot log|S;;| and see that very few of

J. R. Soc. Interface (2008)

the §;; have a magnitude greater than one per cent of
max ;| Sj;|. Therefore, we only have to consider the Sj; for
a few values of 7 and the grouped bar chart can be
restricted to these.

Thus, if we (i) use the SHM to determine the set T},
of times ¢ such that either f; ,,(t) or lf,f(t) is significantly
large, and (ii) use the PSS to identify%hose parameters 7;
such that |S;]| is significantly large we obtain a set of
triples (4,m,7) that give the significant terms of the form
in equation (2.6). These are called hot. We can then
conclude that the control coefficients C¢ that are

significant are those which involve terms of the form
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Figure 4. (a, b) The values of logy, |.S;;| (for the same systems
as in figure 2) are shown as a bar chart, showing only those S;;
whose magnitude is greater than 10 3. We note the generally
fast decline in |S;| as i increases and the large variation in
these values with the parameter index j.

given in equation (2.6) where (4,m,7) is hot and the times
teare in Tj .

2.4. Signalling: the NF-kB system

There are now a number of models of the NF-kB system
(see the references in Tiana et al. 2007). For illustrative
purposes, we consider a modified version of the model due
to Hoffmann et al. (2002) although a similar analysis can,
and, in most cases, has been applied to the other models.
There are n=10 state variables x1, ..., z;y corresponding
to the concentrations of nuclear and cytoplasmic NF-«B
and IkBa and their complexes plus IKK, and s=42
parameters k; most of which are rate constants. The
solution ¢(t) considered is the transient orbit produced
when at {=0 an incoming signal increases the level of
IKK above the equilibrium level. The IKK is washed out
at t=600 min. A conventional sensitivity analysis of a
related model was carried out in IThekwaba et al. (2004)
and Cox (2005) and an analysis based on the variation in
the full solution was carried out in Yue et al. (2006).

The solution of interest is shown in figure 5. For
oscillators it is clear how to choose the length T of the
time period under consideration. For signalling systems
like this, the choice of T'depends upon the problem being
considered. For example, if one is only interested in the
initial response, then T will be chosen small, while if one
is interested in the full response, then a longer period will
be chosen.

J. R. Soc. Interface (2008)

For the purposes of illustration let us suppose that we
are interested in the first two oscillations (i.e. until
t=200) and in the full trajectory (i.e. until t=1000).

We see from figure 5 that the different components
gi(t) of the solution g¢(t)= (g,(%), ..., 9,(t)) have very
different amplitudes. This raises the problem that
parameter changes will tend to produce larger absolute
changes to those variables with larger magnitudes.
Therefore, it will usually be the case that, in situations
like this, relative changes in the g; are more appropriate
than absolute ones. One way to allow for this is to use
log g;(t) instead of ¢;(t). However, this is not sensible in
this case as for some times t, g,(t) is very close to 0. When
this is the case it is usually more appropriate to
normalize and non-dimensionalize the g; by dividing by
the mean value or some other appropriate measure to
obtain a scaled solution §(t) and then to consider the
control coefficient C¥' = dg,/dn;.

Using the software described in the electronic
supplementary material the analysis of this system
takes a few seconds and in figure 6 we show the SHM
and the appropriate rows of the sensitivity matrix. We
apply this to discuss the sensitivity of the peak values and
their timing for the sequence of oscillations (figure 7).

2.5. Summation law

Like certain metabolic control coefficients, the sensi-
tivity PCs satisfy a summation law. This law can be
interpreted as a mathematical statement of the idea (e.g.
Csete & Doyle 2002; Kitano 2002, 2004) that there is a
balance between fragility and robustness in systems like
those we study and that increasing robustness in parts
will increase fragility in others.

This result holds when the parameters k4, ..., k, being
considered are a full set of linear parameters, i.e. are the
parameters in front of the terms which make up f with
such a parameter in front of every term. A precise
definition of such a set is as follows: it satisfies f (¢, z, pk)=
pf(t, z, k) for all p>0. There may be other parameters
but we consider here the case where these are held fixed
and only the linear parameters are varied so that the
parameter vector k just consists of these parameters.

We first consider (i) autonomous systems (i.e. when f
does not depend explicitly on ¢) and (ii) non-autonomous
systems where the solution of interest g(¢) is defined
by its initial condition as in signalling systems (i.e. is the
solution of the differential equation with a given fixed
initial condition). Then the summation law is

S 8,U(1) = (1)

Y]

(2.9)

The function @ is given by

B(1) = 1(t.9(0). 1) = | X(5.1)- 2 (5, 9(). B,
(2.10)

where X(s,t) is the nXn matrix solution of the
variational equation

ad
&X(s7 t) = J(t)- X(s,t),
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Figure 5. The trajectories of the simplified Hoffmann model with parameter values as in Hoffmann et al. (2002). The system is
first allowed to equilibrate and then the level of IKK is increased at t=0. This is washed out at =600 min. There are 10 state
variables corresponding to IKK, nuclear and cytoplasmic NF-kB and IkBe and their complexes.
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Figure 6. (a) The SHMs and (b) the parameter sensitivity spectra (PSS) for the modified Hoffmann model. (a) The analysis when
the time domain is restricted to (i, ili) 0<¢<200 (i.e. T=200) and (ii,iv) when this is 0<¢<1000. (b) The PSS show that in both
cases ((i) 0<t<200 and (ii) 0<¢<1000), only very few parameters k; have sensitivities greater than one thousandth of the
maximum one. However, the dominant parameters for the two cases are different. In (b(i)), we note that ka4, k1, ka7, kal and
klr2 are the most sensitive and that these primarily affect the variables at the times that are coloured red in (af(iii)). As for
figure 3, the maxima and minima have been marked with pink and white bars, respectively, on the heat maps for the fl(gz SO
that one can quickly check which are sensitive to any parameter and then determine which parameters using the PSS. '
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Figure 7. For the two cases ((a) 0<t<200 and (b) 0<¢t<1000) of the Hoffmann model considered in figure 6, we plot the
trajectories of the differential equation and mark those times when f; ,,(¢) > 7= 0.5 for the corresponding value of m and some i.
Using the software associated with this paper, one can effectively and instantaneously produce such plots, changing 7 and seeing

which aspects of the trajectories are sensitive.

with initial condition given by X(s,s) being the identity
matrix. In the above equation, J(¢) is the Jacobian d, f
evaluated at == g(t, k).

In the remaining case where the solution of interest is
a periodic solution of a non-autonomous system, the
summation law is

Z SyU(t) = X(1)(I =X (7)) ' @(r) + &(t), (2.11)

where @ is as above and 7 is the period.

When the system is autonomous then df/dt= 0 and
therefore @(t) = tf(g(t),k) and the summation law
reduces to

ZS@- Ui(t) = tf(g(t), k). (2.12)

From equation (2.12), one can deduce the following
known summation laws for free-running oscillations with
period 7 and amplitude A,, for the mth state variable
(see §5.8.5 of Heinrich & Schuster 1996):

Zalogf__l_ ZalogAm_O
— 0 log k; ’ — dlog k;

form=1,...,n.

However, these can also be proved in a much easier
manner using the fact that scaling the linear parameters
corresponds to scaling time. Again the sums are over just
the linear parameters.

J. R. Soc. Interface (2008)

Note that for autonomous systems ) S;U;(t)=
tf(g(t), k) (sum over all ¢ and j). Thus, if we have
exponential decay of the a;,

(Z 51,7») Ui(t) = t(g(t), ) + O(a2),

because Sj; = O(a;). Therefore, if o5 is small compared to
g1, as is often the case, we deduce that Up(t) is
approximately proportional to tg(t) = tf(g(t), k). But,
for oscillators, tg(t) is the infinitesimal generator of a
change in the period of g, i.e. tg(t) is the derivative at
o=1 of ¢ = g(et). Thus, in this case U(¢) is roughly
proportional to an infinitesimal period change.

3. METHODS

The mathematical object underlying this analysis is a
matrix M that is made up from the partial derivatives
09, (t)/0n;, where 0<t<T. We restrict time ¢ to a
discrete set of equally spaced values t,...,ty and for
each parameter k;and each state variable ,, consider the
column vectors 7, ;= (8g,,/0n;(t1), ..., 09,/0n;(ty)).
For each j we concatenate the r,, ; into a single column
vector 7; and then consider the matrix M whose jth
column is 7;.

This matrix is a time-discretized version of the linear
operator that associates with each change of scaled para-
meters 0n = (614, ..., 0n,) the linearized change dg in the
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solution of interest g that is in the infinite-dimensional
space of appropriate n-dimensional time series.

In order to ensure that in the limit A¢— 0 the singular
value decomposition (SVD) of M is independent of the
choice of the time discretization At= t;,; — t; (assumed
for the moment to be independent of i), we normalize M
by \/At/T and consider instead M; = \/At/TM.

We use the version of SVD that is often called thin
SVD. Since M; has nNrows and s columns (i.e. is nNXs),
this thin SVD is a decomposition into a product of the
form M= UDV" (superscript ‘t’ denotes transpose),
where U is a nNXs orthonormal matrix (UU"'= I,y
and U'U= L), V is a sXs orthonormal matrix and
D =diag(ay,...,0,) is a diagonal matrix. The elements
g, >>0, are the singular values of M. The matrix
Wis the inverse of V and since Vis orthogonal W = V*.

The columns U, of U are orthogonal unit vectors and
can be augmented to provide an orthonormal basis for
the space of discretized time series. As for r; they are in
the concatenated form. To restore them to their form as
time series in n-dimensional space, the concatenation
must be undone but this is straightforward. The Uft;)
then approximate the Uj(t). From M= UDV"' one
immediately deduces that M-V;=0;U;, where V; is
the jth column of V. The fundamental equation (2.2)
follows directly from this.

If it is appropriate to scale the solution g as above in
§2.4 then, in the definition of M, we use the derivatives
04g,,/0n; for the scaled g rather than those for g. If it is
preferred to use the original variables k; instead of the
scaled ones n;=log k;, then we just use the derivatives
with respect to k; instead of n; in the definition of M.

4. DISCUSSION

There is a pressing need for effective tools with which to
probe how a network’s function depends upon its
structure and parameters. The development of such
tools presents many challenges because typically (even
when they have relatively few components) these
networks have significant complexity, are highly non-
linear and the states of interest are dynamical and
non-equilibrium. In particular, they involve large
numbers of state variables and even larger numbers of
parameters. The paper by Kitano (2007) points out that
a solid theoretical foundation of biological robustness is
yet to be established and represents a key challenge in
systems biology, and starts a discussion of how this can
be achieved.

However, Brown & Sethna (2003), Brown et al. (2004)
and Rand et al (2004, 2006) uncovered a surprising
property of such systems that aids the construction of
such tools. This is the local geometric rigidity described
in §2.1: variation in the high-dimensional parameter
space causes variations of the solution of interest that
effectively occupies a space of much lower dimension.

We have shown that the fundamental observation
enables a more global approach to sensitivity analysis
in which we do not have to fix an observable function
in advance but can instead effectively consider the
effect of all the parameters on all reasonable obser-
vables. As a result we are able to represent all the
sensitivities of these complex dynamical systems in

J. R. Soc. Interface (2008)

terms of a pair of relatively simple graphical objects,
the SHM and the PSS.

Since F=S5*S is intimately related to the Fisher
information matrix for such systems, it is clear that the
approach presented here will be useful in developing
techniques for experimental optimization (Brown
et al. 2004).

Our approach is local in phase space, estimating the
structure of the model in a small neighbourhood of a
given set of parameter values. An important task for the
future is to extend this to a theory that is more global in
parameter space. This will require the development of
tools that allow one to sew together the local domains.
Luckily, all the computations used in this paper are very
fast and can be carried out on relatively small
computers. Moreover, many of the computations can
be effectively parallelized. Thus, it is probable that this
task is quite practical from a computational point of
view. This more global approach will be of relevance to
algorithms that search parameter or structure space.
These spaces are very high dimensional and one needs
help in determining in which direction to move. The
current theory suggests how to do this since only
movement in the directions of the dominant PCs
produces substantial changes in the system.

Another limitation is that the approach presented
here, being deterministic in nature, does not make
any use of the significant amount of information
contained in the stochastic fluctuations in data. The
ability to incorporate this into the approach would be
a significant addition.

We mentioned above that in order to allow for the
fact that different parameters and different components
g:(t) of the solution may differ in size by an order of
magnitude or more, it is usually appropriate to scale the
parameters (i.e. take m;=logk; as the parameters)
and/or to scale the components g¢,t). The choice of
whether to scale one or other or both of these depends
upon the context. It is also sometimes natural not to
scale either; for example, this is sometimes the case when
using this approach for experimental optimization.

The software used in my analysis was developed with Paul
Brown and much of it was originally developed in collaboration
with Boris Shulgin. I am very grateful to both of them and also
to Nigel Burroughs and How Sun Jow for their discussions on
the experimental optimizations that are related to some
aspects discussed here. I had some very useful discussions
with David Broomhead and Mark Muldoon about how to prove
the fundamental observation. I am very grateful to Hugo van
den Berg for a critical reading of a draft manuscript. I also
thank Sanyi Tang, Andrew Millar, Bérbel Finkenstadt,
Isabelle Carré and John Tyson for their useful discussions
on these topics, the KITP for its hospitality and the
BBSRC, EPSRC and EU (BioSim Network Contract no.
005137) for funding. I currently hold an EPSRC Senior
Research Fellowship.
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